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The overestimation of power density by the Fraunhofer
("far-field") approximation to the more exact Presnel ("near-field”)
diffraction integral is determined as a function of Fresnel number
at arbitrary on-axis field points for rectangular and circular
aperture illuminations of uniform asplitude and phase. For square
and circular apertures, the overestimation is 2.8 percent and 1.3
percent, respectively, at a Fresnel mumber of 1/8 (corresponding to
the far-field boundary distance 2D°/A) and 518 percent and 147
percent, respectively, at a Fresnel mmber of 1.

*This work was sponsored by the Electronic Systems Division, Air
Force Systems Command, Hanscom Air Force Base, Massachusetts.
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R SECTION 1
- INTRODUCTION
“:ﬁ_

The Fraunhofer and Fresnel diffraction integrals are commonly

o used analytical tools for the evaluation of fields originating from
L )

15}5:3, illuminated apertures. These integrals are derived in appendix A
'ff;?‘, from the Fresnel-Kirchhoff integral subject to small angle

A conditions. Whereas the exponential factor of the Fresnel integrand

“" retains both linear and quadratic phase terms (as a function of the

k:.s: aperture coordinates) and is applicable to near-field points as well

e as far-field points, the Fraunhofer integrand retains only linear

jtg:‘ phase terms and is applicable only to far-field points. The
Fraunhofer “far-field" formulation is, therefore, an approximation

‘#ﬁ*ﬁ to the more exact Fresnel "near-field" formulation. (This statement

W is not applicable at a lens focal point where both linear and

f’é”ﬁ:_‘ quadrature phase terms are zero.)

J

’.:;;'.: For on-axis field points and an aperture illumination of

;3;‘,:; uniform phase, the Fraunhofer phase terms are zero, corresponding to

1;52:.: totally constructive interference. However, for the same

a conditions, the Fresnel phase terms are non-zero, corresponding to

:':,: destructive interference among interfering rays. Consequently, the

:&,!:: far-field formulation yields a larger power density at an arbitrary

:jz‘g; on-axis field point than the more exact near-field formulation for

— an aperture illumination of uniform phase.

':'-E In this paper, the overestimation of power density by the

‘E:I far-field formulation is determined as a function of Fresnel number

at arbitrary on-axis field points for rectangular and circular
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aperture illuminations of uniform amplitude and phase. For square
and circular apertures, the overestimation is found to be

2.8 percent and 1.3 percent, respectively, at a Fresnel number of
1/8 (corresponding to the far-field boundary distance 202/A) and 518
percent and 147 percent, respectively, at a Fresnel number of 1.

The 1.3 percent result is compatible with a result reported

earlier(l).

The Fresnel number is defined in section II. Far-field and
near-field formulations are summarized in sections III and 1V,
respectively. A comparison of far-field and near-field formulations
is given in section V.




Ei'::: smlw 2

DEFINITION OF FRESNEL NUMBER

ROy Consider a collimated beam, of uniform amplitude and phase with
intensity I, (W/mz) at a wavelength A(m), which is incident on a

R limiting aperture. For a rectangular aperture, the clear aperture

o is of width 2bx and height 2by (see figure la). For a circular

NG aperture, the clear aperture is of radius b (see figure 1lb). 1In

: pd figure 1, a collimated beam corresponds to a source point S at a
* % distance 4’ = =,

<2 For a circular aperture of radius b, the number N of Fresnel
s zones, subtended by every point on the edge of the circular aperture
e at a field point P(0,0,d) on the optical axis at a distance d €rom
S the aperture, is defined as

;.. N = (ﬂ)_v-z_(ﬂ)_ ~ b2/AL; be<d, be<ad’ (1)

I where

e s = (b2 +a%12, .. % + d,2)1/2 (see figure 1b)
L= [(1d) + (1/d)]7]

B, For a collimated beam, L = d and equation (1) reduces to

bt N = b%/M; bcd, collimated beam (2)

- For points P in the very near field, N + », For points P in
A the very far field, N + 0. For a collimated beam, the boundary
nl distance between the near field and far field is conventionally
e chosen as‘!) d = 2(2b)2/x which corresponds to a Fresnel number
N = b2/Md = 1/8.
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(a)

Limiting Aperture Geometry
(a) Rectangular Aperture
(b) Circular Aperture

Figure 1.
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Consider now the rectangular aperture of figure la. Not every
point on the edge of the rectangular aperture subtends the same
number of Fresnel zones (except in the very far field).
Consequently, the effect of edge diffraction, on the intensity at a
near-field point, is less pronounced for a rectangular or square
aperture than for a circular aperture. Edge diffraction by a
rectangular aperture is characterized by the Fresnel numbers, N, and
Ny, defined by

-a

N = 35— = bf‘ /00); b <<d, collimated beam  (3a)
S - d 2 1 .

N, = -b— ~ by /(M) ; by<<d, collimated beam  (3b)

where
2 2,1/2 - 172 .

5, = (bx + d%) ’ sy (by + d ) (see figure la)
The Fresnel number N, is the number of Fresnel zones subtended by
every point on the edges x = + bx of the rectangular aperture at the
field point P if the point source S were replaced by a line source
of infinite extent parallel to the y axis and if the aperture were
of infinite extent in the y direction. A similar statement applies

to Ny if x and y are interchanged in the statement for N,.
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' SECTION 3
5
’ FAR-FIELD FORMULATION
\7"
i:l
!:Q
("g
'§§ The on-axis intensity I (W/mz) at a far-field point
! P(x,y,z) = P(0,0,d) is found from the Fraunhofer diffraction
" integral of appendix A to be(z)
&
J_f? 1
it - 2 __o 2
o 1(0,0,d) = |u(0,0,d)| ) H'dxodyo
a A
o 2
& I, A P, A P, 9
o - — = - collimated beam (4)
gt U ana’
RS
_' where
o 4b, b, rectangular aperture
:::' A = aperture area = y
]
Y 2, circular aperture
.
J' P, = total power radiated = I, A
.’o: . 4na
»,;‘;, g = aperture (antenna) gain = 7—
b' \
2
" an , rectangular aperture
Y - (Wx)(visy)
& [u/()‘/Zb)]2 , circular aperture
&
;::2 It will be noted from equation (4) that the beam is no longer
i collimated in the far field but appears to be spreading as though
e
o the aperture were a point source whose radiation is confined
,7;" primarily to beam total angles of the order of (mbx) in the x-z
#
::“ plane and (M/2b ) in the y-z plane.
4
i
] 31
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vy

0O0e QOGO MORGORDERO] PO G X X IO LSS ICIR BRI AR



:o'.';':. The intensity I at a field point P(0,0,d) can be expressed in
"?g" terms of the number of Fresnel zones subtended by the aperture at
R the field point. Noting from equation (2) and equation (3) that
o A = mNAd for a circular aperture and that A = &N m'y M for a
(™ rectangular aperture, equation (4) reduces to
i I, 16 N, NY , rectangular aperture (5a)
I= .

I, u2 N2 , Circular aperture ’ (5b)

i <

e collimated beam, Nx’ Ny, N<1/8
1@ 3 It will be noted from equation (4) or equation (5) that in the
far-field I » 0 as 1/d% » 0 or equivalently I - 0 as
e NN (or N%) > 0.
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SECTION 4

NEAR-FIELD FORMULATION

The intensity I (mz) at any on-axis field point P(0,0,d) of a
rectangular aperture with illumination of uniform amplitude and
phase, is found from the Fresnel integral to bo(”

1 -4, [PV « SVED)][FVED) « SUB))] 6
collimated beam, b'<<d. by((d

where
w

Clw) = I col[(WR’] dt = Presnsl cosine mtognl“’
0

w
stw) = [ sin[(n/2)t?] dt = rreenel sine integrar!!
0
N, Ny = Presnel mmbers defined by eguation (3)

I, = aperture intensity (Mz)

The Fresnel integrals have the properties thlt”’

S(w) = - §(=w), C(w) = - C(-w) (7a)

S(e) = C(=) = } ()

8(0) = C(0) =0 (7c)
4-1




!th‘-Ny--, equation (6) reduces to I = I, which is to be
expected for points in the very near field. For N = ilv =0,
equation (6) reduces to I = 0 which is to be expected for points in
the very far field.

Equation (6) reduces to equation (Sa) in the limit of small
Fresnel mmbers. This result is demonstrated by noting th-t(S)

: Clw) » w ~ _L?_szs L S (8a)
S(w) -#w3 -—%ﬁ w7 L PN (8b)

o o o

R G + s2w) = - d i e (8¢c)
X
2 2 3
cze.f!ﬂ;) + 8 (/!l;) - zcx - z;— (R/2) (u,) * s (9a)
2 . 2 3
cz(/m;ns(/ly)-uy Wty e (9b)
o
R Substituting equations (9a) and (9b) with the condition (4a’/45) (N2

+ Ni) << 1, into equation (6), I =~ I, 16 N, uy which is the result
given by equation S(a).

Por a circular aperture which subtends a small angle at a field
point P(0,0,d), the on—axis intensity I is found from the Presnel
integral to be




-
L]

b
l'—i&/ro‘—m&uﬂljmuuz/m rdr I’
0

- I, | 1 - exp (-1.!)|2- I, {(1 - coc(.l)lzo sinz(nl)}

., sin?(wi/2); collimated besm, b<<d (10)

where

[ = (xz + yz)‘l/2

N= bz/u.

Por Nel}l, 3,5 ...., 1= 410. PorNe2, 46, ...., 1 =0.
rorNee, Ie1,. (Sguation (10) does not extrapolate to this
result because equation (10) is not valid for apertures which
subtend a large angle at the field point. 3See reference [6) for
circular apertures which subtend a large angle at the field point.)
With the substitution exp (-imN) = 1-imi for (R2/12) << 1,
equation (10) reduces to I % I_x which is compatible with the
far-field result given by eguation 5(b).

T T




SECTION 5

COMPARISON OF FAR-FIELD AND NEAR-FIELD FORMULATIONS

The on-axis near-field intensities for square apertures of side
length 2b = 2by = 2b and circular apertures of diamster D = 2b with
illumination of uniform amplitude and phase, are compared in
figure 2 as a function of the Fresnel mmber N - "Y aNe bz/)d.
The near-field formulations given by equations (6) and (10) are also
compared with those obtained from the far-field formulations given
by equations (5a) and (Sb).

The peak intensities attained are uo at Freansl mmbers Nsl,
3, S, ... for circular apertures and 3.24 I, ot a Fresnel mmber
N = 3/4 for square apertures. The ainimm intensities attained in
the near field are 0 1,8t Presnel mmbers N = 2, 4, 6 ... for
circular apertures and 0.37 I, 8t a Presns]l mmber N = 7/4 for
square apertures. The intensities obtained from the far-field
formulations exceed those cbtained from the more exact near-field
formulations.

The ratios of these intensities are given in table 1 as a
function of the Fresnel number N. PFor square and circular
apertures, the far-field formulation overestimates the power density
by 2.8 percent and 1.3 percent, respectively, at a Fresnel mmber of
1/8 (corresponding to the far-field boundary distance Uzlx) and 518
percent and 147 percent, respectively, at a Fresnsl mmber of 1.

The overestimation um)z/sm’(-vm - 1 for circular apertures
has been reported earlier!l). please note the round-off error in
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Figure 2. On-Axis Intensity for Square and Circular Apertures
of Uniform Phase and Amplitude Illumination
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4—;:;1 reference [1]) for a Fresnel number of 1/4 (6/G, = 0.95 and not

"S:“ 0.94). For Fresnel numbers corresponding to constructive or weakly

ﬁt destructive interference, the overestimation is greater with square
. apertures than with circular apertures. However, for Fresnel

:5{ numbers corresponding to totally or almost totally destructive
i) interference, the overestimation is greater with circular apertures

N (see N=2 and N=2.25 in table 1). Constructive and destructive

interference are more pronounced for circular apertures and,
therefore, are in better and worse agreement, respectively, with the
. totally constructive on-axis interference of the Fraunhofer

integral.
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) APPENDIX A

i
H DERIVATION OF THE FRAUNHOFER AND FRESNEL DIFFRACTION INTEGRALS
. For a source point S(x’,y’,d’), arbitrary aperture point
4 Q(x,,y,) with origin 0, and field point P(x,y,d), the
9 Fresnel-Kirchhoff diffraction integral for the amplitude U(P)
! (proportional to either the scalar electric or magnetic field

intensities) is given in the notation of figure 1 byu)

3
% . .

) Bi exp[ik(s’+s 22, _ 22 -

: up) = - 5 {J’ explikis'+8)] (cos(R,3") - cos (R.D)laxdy, (A1)
! where
A

‘g g' - al §' = |§|
Al g - P_Q" s = 'ﬁl

J B = unit vector normal to the aperture in the direction of the +z
h axis

‘ A = area of the clear aperture

%. '}

i B = complex constant = d’ /T_ e~ikd’ hich satisfies the boundary
# . o]
o condition U(0,0,0) = /f; .

, (The aperture point Q(xo, yo) is not restricted to the aperture

K point Q shown in figure 1).

K]

. Por the small angle conditions

; @3 =@ 8, &=@RN0 (A-2)
! and the straight line condition

" (53, P8) = n radians (A-3)
‘g (1) u. Born and E. Wolf, "Principles of Optics "(Pergamon Press,

"~
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nh then

ity cos(n,s’) =1, cos(n,8) = -1, [conditions (A-2) and (A-3)] (A-4)
l/s's = 1/d'd [{condition (A-2)]) (A-5)
:,;g,fr Expanding s’ and s in a power series,

W 2, .2 2

3
::(‘a:: s’ +s=4" +d - (ko + ¥¥o) + %o T Yo - %o + yyo)
'"‘i d 2L 2d3

-« . .(A-6)

exp [ik(s’+s)] = exp [ik(d’'+d)] exp (ikf) (A=7)
il where

2 2 2

Xo + ¥Yg _ (xxo +yy°)

(xxo+ yyo) .

Q f = - 3

4
e L= [(1d) + (1477}

Substituting equations (A-4) - (A-7) and the boundary condition
" U(0,0,0) = /I_o into equation (A-11),

wu! - T
s U(P) = —3 exp (ikd) .” exp(ikf) clxodyo (A-8)
A

P If only the first term in the above expansion for f is retained,
e, then equation (A-8) reduces to

T - i/'I-o
e UP) = — g2 exp (ikd) {I exp [(-ik/Q) (xx ¢ yy )| ax dy,  (a-9)

NN
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o Equation (A-9) is known as the Fraunhofer diffraction integral.

;»' I1f only the first two terms in the above expansion for f are
g retained, then equation (A-8) reduces to

Py -i/T_
Z‘é: U(P) = =g 2 exp (ikd) (f{ exp [(-ik/d)(xxo+ yyo)]

exp [( ik/2L) (x+ yg)] ax dy, ) (A-10)

'ﬁ Equation (A-10) is known as the Fresnel diffraction integral.
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